Edaravone inhibits procaspase-3 denitrosylation and activation through FasL-Trx2 pathway in KA-induced seizure

依达拉奉抑制 KA 诱发癫痫发作中原胱天蛋白酶 3 去亚硝基化和通过 FasL-Trx2 通路活化

阅读:6
作者:Lingyun Hao, Ling Dong, Qiuxing Yu, Wen Shen, Xuewen Wei

Abstract

Previous studies have demonstrated that excessive free radicals play an essential role in the initiation and progression of epilepsy and that a novel exogenous free radical scavenger edaravone (Ed) exerts some neuroprotective effects on seizure-induced neuronal damage. The purpose of this study was to elucidate the possible molecular mechanisms of Ed associated with procaspase-3 denitrosylation and activation through the FasL-Trx2 pathway in seizures rats. In this study, we investigated the effects of Ed on the regulation of the combination of Fas ligand/Fas receptor and the major components of the death-inducing signaling complex (DISC) in the hippocampus of kainic acid (KA)-treated Sprague Dawley (SD) rats. Treatment with Ed can attenuate the increased expression of FasL induced by KA and prevent procaspase-3 denitrosylation and activation via suppression of the FasL-Trx2 signaling pathway, which alleviates the neuronal damage in seizures. These results provide experimental evidence that Ed functions by preventing the denitrosylation and activation of procaspase-3 and that Ed acts as a therapeutic option for epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。