In vitro lipolysis and physicochemical characterization of unconventional star anise oil towards the development of new lipid-based drug delivery systems

非常规八角茴香油的体外脂肪分解和物理化学表征,用于开发新的基于脂质的药物输送系统

阅读:9
作者:Jannet Kamoun, Fatma Krichen, Imed Koubaa, Nacim Zouari, Ali Bougatef, Abdelkarim Abousalham, Ahmed Aloulou

Abstract

Lipid-based drug delivery systems are widely used for enhancing the bioavailability of poorly water-soluble drugs. However, following oral intake, lipid excipients often undergo gastrointestinal lipolysis, which drastically affects drugs solubility and bioavailability. That's why developing new lipid excipients which are resistant to digestion would be of great interest. We studied here the potential role of the unconventional Chinese star anise whole seedpod oil (CSAO) as an alternative multifunctional lipid excipient. Pancreatic lipase-mediated digestion of the extracted crude oil emulsion was assessed in vitro. Pancreatic lipase, being a strict sn-1,3-regioselective lipase, showed a high (16-fold) olive oil to CSAO activity ratio, which could be attributed to fatty acids composition and triglycerides intramolecular structure. For the sake of comparison, the non-regioselective lipase Novozyme® 435 exhibited higher activity than pancreatic lipase on CSAO emulsion, perhaps due to its ability to release fatty acids from the internal sn-2 position of TAGs. Apart counteracting lipolysis, CSAO oil also showed additional biopharmaceutical benefits including moderate antioxidant and antihypertensive activities. Altogether, these findings highlight for the first time the potential use of star anise unconventional whole seedpod oil as a multifunctional lipid excipient for the development of new lipid formulations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。