Exendin‑4 reverses endothelial dysfunction in mice fed a high‑cholesterol diet by a GTP cyclohydrolase‑1/tetrahydrobiopterin pathway

Exendin-4 通过 GTP 环水解酶-1/四氢生物蝶呤途径逆转高胆固醇饮食小鼠的内皮功能障碍

阅读:5
作者:Zhiqi Tang, Lijuan Liu, Yujie Guo, Guoxiong Deng, Meixiang Chen, Jinru Wei

Abstract

The present study examined whether exendin‑4 (Ex4) can improve the endothelial dysfunction of apolipoprotein E knockout (APOE‑KO) mice fed a high‑cholesterol diet and the potential mechanism by which it acts. Genetically wild‑type (WT) C57BL/6 mice and APOE‑KO mice of C57BL/6 background, were each randomly assigned to receive either Ex4 treatment (Ex4‑treated, for 8 weeks) or not (control). The 4 groups were fed the same high‑cholesterol diet for 8 weeks. The following were measured at the end of the eighth week: Endothelium‑dependent vasodilation of the arteries; plasma nitric oxide (NO) and metabolic index; levels of endothelial NO synthase (eNOS); phosphorylated eNOS (p‑eNOS; Ser‑1,177); guanosine triphosphate cyclohydrolase‑1 (GCH1); and tetrahydrobiopterin (THB). Ex4 treatment was associated with higher p‑eNOS levels in the WT group and in the APOE‑KO group, and higher vascular expression of GCH1 and higher arterial THB content, compared with baseline values. The results of the present study suggested that Ex4 may exert cardioprotective effects by reversing high‑cholesterol diet‑induced endothelial dysfunction in APOE‑KO mice. The protective mechanism is probably associated with the promotion of the expression levels of GCH1 protein and THB that maintain the normal function of eNOS.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。