Exendin‑4 reverses endothelial dysfunction in mice fed a high‑cholesterol diet by a GTP cyclohydrolase‑1/tetrahydrobiopterin pathway

Exendin-4 通过 GTP 环水解酶-1/四氢生物蝶呤途径逆转高胆固醇饮食小鼠的内皮功能障碍

阅读:9
作者:Zhiqi Tang, Lijuan Liu, Yujie Guo, Guoxiong Deng, Meixiang Chen, Jinru Wei

Abstract

The present study examined whether exendin‑4 (Ex4) can improve the endothelial dysfunction of apolipoprotein E knockout (APOE‑KO) mice fed a high‑cholesterol diet and the potential mechanism by which it acts. Genetically wild‑type (WT) C57BL/6 mice and APOE‑KO mice of C57BL/6 background, were each randomly assigned to receive either Ex4 treatment (Ex4‑treated, for 8 weeks) or not (control). The 4 groups were fed the same high‑cholesterol diet for 8 weeks. The following were measured at the end of the eighth week: Endothelium‑dependent vasodilation of the arteries; plasma nitric oxide (NO) and metabolic index; levels of endothelial NO synthase (eNOS); phosphorylated eNOS (p‑eNOS; Ser‑1,177); guanosine triphosphate cyclohydrolase‑1 (GCH1); and tetrahydrobiopterin (THB). Ex4 treatment was associated with higher p‑eNOS levels in the WT group and in the APOE‑KO group, and higher vascular expression of GCH1 and higher arterial THB content, compared with baseline values. The results of the present study suggested that Ex4 may exert cardioprotective effects by reversing high‑cholesterol diet‑induced endothelial dysfunction in APOE‑KO mice. The protective mechanism is probably associated with the promotion of the expression levels of GCH1 protein and THB that maintain the normal function of eNOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。