Tuning Material Properties of Nanoemulsion Gels by Sequentially Screening Electrostatic Repulsions and Then Thermally Inducing Droplet Bridging

通过依次筛选静电排斥力并热诱导液滴桥接来调整纳米乳液凝胶的材料性质

阅读:3
作者:Li-Chiun Cheng, Signe Lin Kuei Vehusheia, Patrick S Doyle

Abstract

Nanoemulsions are widely used in applications such as food products, cosmetics, pharmaceuticals, and enhanced oil recovery for which the ability to engineer material properties is desirable. Moreover, nanoemulsions are emergent model colloidal systems because of the ease in synthesizing monodisperse samples, flexibility in formulations, and tunable material properties. In this work, we study a nanoemulsion system previously developed by our group in which gelation occurs through thermally induced polymer bridging of droplets. We show here that the same system can undergo a sol-gel transition at room temperature through the addition of salt, which screens the electrostatic interaction and allows the system to assemble via depletion attraction. We systematically study how the addition of salt followed by a temperature jump can influence the resulting microstructures and rheological properties of the nanoemulsion system. We show that the salt-induced gel at room temperature can dramatically restructure when the temperature is suddenly increased and achieves a different gelled state. Our results offer a route to control the material properties of an attractive colloidal system by carefully tuning the interparticle potentials and sequentially triggering the colloidal self-assembly. The control and understanding of the material properties can be used for designing hierarchically structured hydrogels and complex colloid-based materials for advanced applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。