Conclusion
It is predicted that the synthesized nanoparticle can be used as computed tomography contrast agent. Also, it can be used to identify the tumor cells with higher expression of CD24 at the early stages more efficiently compare to the other routine methods.
Methods
The surface modifications of gold nanoparticles (Au-NPs) were done with long PEG (HS-PEG-CH3O) and short PEG (HS-PEG-COOH) chains to enhance their stability and capacity for immobilization of different antibodies. MTT assay was carried out to assess the biocompatibility of the NPs. The obtained contrast agent was implemented in the targeted CT imaging based on in vitro and in vivo studies of breast cancer.
Purpose
Molecular imaging is one of the import
Results
The results revealed that the attached CD24 to the cell surface of PEGylated Au-NPs could enhance significantly the cells CT number (40.45 HU in 4T1, while it was 16.61 HU in CT26) It was shown that the attenuation coefficient of the molecularly targeted cells was more than 2 times excessive than the control groups. Further, the tumor region in model of xenograft tumor has higher density compare to the omnipaque groups, 60 min after injection (45 Hu vs.81 Hu). These results showed that the nanoparticles stayed in tumor region for longer time.
