Enhancing the sensitivity of a surface plasmon resonance-based optical sensor for zinc ion detection by the modification of a gold thin film

通过改性金薄膜提高基于表面等离子体共振的光学传感器对锌离子检测的灵敏度

阅读:5
作者:Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Yap Wing Fen, Nur Ain Asyiqin Anas, Nur Alia Sheh Omar, Nur Syahira Md Ramdzan, Hideki Nakajima, Mohd Adzir Mahdi

Abstract

Surface plasmon resonance (SPR) sensors as novel optical sensors for the detection of a variety of analytes have been receiving increasing attention and their sensitivity has become the research hotspot recently. In this study, the sensitivity of an SPR optical sensor was enhanced by modifying a gold thin film with a nanocrystalline cellulose (NCC)-based material for zinc ion (Zn2+) detection that exists in the environment due to industrial processing. By replacing the gold thin film with a novel modified-gold thin film, Zn2+ can be detected from the range of 0 to 10 ppm using SPR. It is believed that the Zn2+ may interact with the negative charge molecules that exist on the modified-gold thin film, and this was confirmed via X-ray photoelectron spectroscopy (XPS). Moreover, this modified-gold-SPR has a high sensitivity of 1.892° ppm-1 up to 0.1 ppm with an enhanced detection of Zn2+ as low as 0.01 ppm. The SPR results also followed the Langmuir isotherm model with a binding affinity of 1.927 × 103 M-1, which further confirmed the sensitivity of the SPR sensor. In addition, using the modified-gold thin film, SPR has a higher affinity towards Zn2+ compared to other metal ions, i.e. Ni2+, Fe2+, Cr2+, Mn2+, and Co2+.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。