Highly efficient CRISPR-mediated genome editing through microfluidic droplet cell mechanoporation

通过微流控液滴细胞机械穿孔实现高效的 CRISPR 介导基因组编辑

阅读:4
作者:You-Jeong Kim #, Dayoung Yun #, Jungjoon K Lee, Cheulhee Jung, Aram J Chung

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-based editing tools have transformed the landscape of genome editing. However, the absence of a robust and safe CRISPR delivery method continues to limit its potential for therapeutic applications. Despite the emergence of various methodologies aimed at addressing this challenge, issues regarding efficiency and editing operations persist. We introduce a microfluidic gene delivery system, called droplet cell pincher (DCP), designed for highly efficient and safe genome editing. This approach combines droplet microfluidics with cell mechanoporation, enabling encapsulation and controlled passage of cells and CRISPR systems through a microscale constriction. Discontinuities created in cell and nuclear membranes upon passage facilitate the rapid CRISPR-system internalization into the nucleus. We demonstrate the successful delivery of various macromolecules, including mRNAs (~98%) and plasmid DNAs (~91%), using this platform, underscoring the versatility of the DCP and leveraging it to achieve successful genome engineering through CRISPR-Cas9 delivery. Our platform outperforms electroporation, the current state-of-the-art method, in three key areas: single knockouts (~6.5-fold), double knockouts (~3.8-fold), and knock-ins (~3.8-fold). These results highlight the potential of our platform as a next-generation tool for CRISPR engineering, with implications for clinical and biological cell-based research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。