Role of indoleamine 2,3-dioxygenase in ischemia-reperfusion injury of renal tubular epithelial cells

吲哚胺2,3-双加氧酶在肾小管上皮细胞缺血再灌注损伤中的作用

阅读:11
作者:Theodoros Eleftheriadis #, Georgios Pissas #, Spyridon Golfinopoulos, Vassilios Liakopoulos, Ioannis Stefanidis

Abstract

The present study evaluated indoleamine 2,3‑dioxygenase 1 (IDO) kinetics and how it affects cell survival during the two distinct phases of ischemia‑reperfusion (I‑R) injury. Primary renal proximal tubular epithelial cells (RPTECs) were cultured under anoxia or reoxygenation with or without the IDO inhibitor 1‑DL‑methyltryptophan, the aryl‑hydrocarbon receptor (AhR) inhibitor CH223191 or the ferroptosis inhibitor α‑tocopherol. Using cell imaging, colorimetric assays, PCR and western blotting, it was demonstrated that IDO was upregulated and induced apoptosis during anoxia. The related molecular pathway entails tryptophan degradation, general control non‑derepressible‑2 kinase (GCN2K) activation, increased level of phosphorylated eukaryotic translation initiation factor 2α, activating transcription factor (ATF)4, ATF3, C/EBP homologous protein, phosphorylated p53, p53, Bax, death receptor‑5 and eventually activated cleaved caspase‑3. Reoxygenation also upregulated IDO, which, in this case, induced ferroptosis. The related molecular pathway encompasses kynurenine production, AhR activation, cytochrome p450 enzymes increase, reactive oxygen species generation and eventually ferroptosis. In conclusion, in RPTECs, both anoxia and reoxygenation upregulated IDO, which in turn induced GCN2K‑mediated apoptosis and AhR‑mediated ferroptosis. Since both phases of I‑R injury share IDO upregulation as a common point, its inhibition may prove a useful therapeutic strategy for preventing or attenuating I‑R injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。