SOMC grafting of vanadium oxytriisopropoxide (VO(O i Pr)3) on dehydroxylated silica; analysis of surface complexes and thermal restructuring mechanism

氧化三异丙氧化钒 (VO(O i Pr)3) 在脱水二氧化硅上的 SOMC 接枝;表面复合物和热重组机理的分析

阅读:4
作者:Manuel P Högerl, Li Min Serena Goh, Edy Abou-Hamad, Samir Barman, Oliver Dachwald, Farhan Ahmad Pasha, Jeremie Pelletier, Klaus Köhler, Valerio D'Elia, Luigi Cavallo, Jean-Marie Basset

Abstract

Vanadium oxytriisopropoxide (VO(O i Pr)3), 1, was grafted on highly dehydroxylated silica (SiO2-700: aerosil silica treated at 700 °C under high vacuum) to generate compound 2 following the concepts and methodology of surface organometallic chemistry (SOMC). The resulting compound was analyzed by elemental analysis, FT-IR, 1H, 13C and 51V solid state (SS) NMR, Raman and EPR spectroscopies. The grafting reaction of 1 to generate 2 was found to lead to the formation of a monopodal surface complex [([triple bond, length as m-dash]Si-O-)V(O)(O i Pr)2], 2m, as well as bipodal [([triple bond, length as m-dash]Si-O-)2V(O)(O i Pr)], 2b, formed along with ([triple bond, length as m-dash]Si-O- i Pr) moieties as an effect of the classical rearrangement of 2m with strained siloxane bridges. Upon controlled thermal treatment at 200 °C under high vacuum, 2m and 2b were found to mainly rearrange to tetrahedral VO4 moieties [([triple bond, length as m-dash]Si-O-)3V(O)] (3) with formation of propylene whereas the ([triple bond, length as m-dash]Si-O- i Pr) groups were preserved. The mechanism of the thermal rearrangement of the isopropoxide groups was investigated by a DFT approach revealing the occurrence of a concerted γ-H-transfer and olefin elimination mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。