Conclusions
The in vivo experiments conclusively established hucMSC-Exos as a pivotal component in preserving renal function and retarding the progression of DKD. Our utilization of single-cell sequencing technology, in conjunction with in vivo and in vitro experiments, provides compelling evidence that M2 macrophages are instrumental in enhancing the amelioration of diabetic nephropathy.
Results
The study commenced with the extraction and characterization of hucMSC-Exos, including the determination of their concentrations. Animal experiments were conducted to evaluate the therapeutic potential of hucMSC-Exos in a DKD mouse model. Subsequently, single-cell sequencing was employed to investigate the molecular mechanisms underlying the efficacy of extracellular vesicles in ameliorating DKD. These findings were further substantiated by cell-based experiments. Importantly, the results indicate that hucMSC-Exos can impede the progression of DKD in mice, with macrophage activation playing a pivotal role in this process. Conclusions: The in vivo experiments conclusively established hucMSC-Exos as a pivotal component in preserving renal function and retarding the progression of DKD. Our utilization of single-cell sequencing technology, in conjunction with in vivo and in vitro experiments, provides compelling evidence that M2 macrophages are instrumental in enhancing the amelioration of diabetic nephropathy.
