Knockdown of TrkA in cumulus oocyte complexes (COCs) inhibits EGF-induced cumulus expansion by down-regulation of IL-6

敲低卵丘卵母细胞复合体 (COC) 中的 TrkA 可通过下调 IL-6 来抑制 EGF 诱导的卵丘扩张

阅读:5
作者:Yong Wang, Ning Liang, Guidong Yao, Hui Tian, Yiwen Zhai, Yimeng Yin, Fei Sun

Abstract

Tyrosine kinase receptor A (TrkA), the high-affinity receptor of nerve growth factor (NGF), is known to play key roles in ovarian follicular development, such as assembly of early follicles and follicular ovulation. However, little is known about the roles of TrkA in cumulus oocyte complex (COC) expansion. In this study, we found that TrkA was abundant in large antral follicles and knockdown of TrkA in COCs attenuated epidermal growth factor (EGF)-induced COC expansion and further decreased the ovulation rate. The effect of TrkA on COC expansion was not mediated through downstream EGF effectors, phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2) or drosophila mothers against decapentaplegic protein (SMAD), or through up-regulation of COC expansion-related transcripts such as prostaglandin-endoperoxide synthase 2 (Ptgs2), hyaluronan synthase 2 (Has2), TNF-induced protein 6 (Tnfaip6) or pentraxin 3 (Ptx3). However, pharmacological blockade of TrkA transducing activity (K252α) in COCs decreased the mRNA expression and protein secretion of interleukin-6 (IL-6), identified from mRNA microarray of K252α-treated COCs. Meanwhile, knockdown of IL-6 attenuated EGF-induced COC expansion. In addition, IL-6 rescued the inhibitory effect of K252α on EGF-induced cumulus expansion. Therefore, IL-6 may act as a new potential cumulus expansion-related transcript, which may be involved in the integration of TrkA and EGF signaling in affecting COC expansion. Here, we provide mechanistic insights into the roles of TrkA in EGF-induced cumulus expansion. Understanding potential cross-points between TrkA and EGF affecting cumulus expansion will help in the discovery of new therapeutic targets in ovulation-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。