Evolving immunosuppressive microenvironment during human cervical carcinogenesis

人类宫颈癌变过程中免疫抑制微环境的演变

阅读:4
作者:A Kobayashi, V Weinberg, T Darragh, K Smith-McCune

Abstract

Chronic infection with human papillomavirus (HPV) can result in cervical cancer. To understand how HPV escapes immune eradication, we examined biophenotypes of immune cells in human normal cervix, cervical intraepithelial neoplasia (CIN), and cancer. Expression and cellular localization of Forkhead box protein-3 (FOXP3), indolamine 2,3-dioxygenase (IDO), interleukin (IL)-10, and interferon (IFN)-gamma were examined by immunofluorescence and immunohistochemistry. Mean cell densities of stromal FOXP3+ cells, IDO+ cells, IL-10+ cells, CD1a+ cells, and macrophages significantly increased from normal cervix to cancer, whereas densities of IFN-gamma+ and MMP-9+ cells increased from normal cervix to CIN but decreased in cancer. Flow cytometry confirmed significant elevation of cervical T cells expressing IFN-gamma and transforming growth factor-beta in CIN compared with normal cervix. Upon activation, a significantly increased proportion of cervical T cells expressed IFN-gamma in CIN than normal. A unique subset of morphologically immature stromal dendritic cells expressing IL-10 and IDO was more numerous in cancer than in normal cervix and CIN. The potentially suppressive immune milieu in the cervix may be permissive of HPV-associated cervical carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。