Acridinedione as selective flouride ion chemosensor: a detailed spectroscopic and quantum mechanical investigation

吖啶二酮作为选择性氟离子化学传感器:详细的光谱和量子力学研究

阅读:6
作者:Nafees Iqbal, Syed Abid Ali, Iqra Munir, Saima Khan, Khurshid Ayub, Mariya Al-Rashida, Muhammad Islam, Zahid Shafiq, Ralf Ludwig, Abdul Hameed

Abstract

The use of small molecules as chemosensors for ion detection is rapidly gaining popularity by virtue of the advantages it offers over traditional ion sensing methods. Herein we have synthesized a series of acridine(1,8)diones (7a-7l) and explored them for their potential to act as chemosensors for the detection of various anions such as fluoride (F-), acetate (OAc-), bromide (Br-), iodide (I-), bisulfate (HSO4 -), chlorate (ClO3 -), perchlorate (ClO4 -), cyanide (CN-), and thiocyanate (SCN-). Acridinediones were found to be highly selective chemosensors for fluoride ions only. To investigate in detail the mechanism of selective fluoride ion sensing, detailed spectroscopic studies were carried out using UV-visible, fluorescence and 1H NMR spectroscopy. Fluoride mediated (NH) proton abstraction of acridinedione was found to be responsible for the observed selective fluoride ion sensing. Quantum mechanical computational studies, using time dependent density functional theory (TDDFT) were also carried out, whereupon comparison of acridinedione interaction with fluoride and acetate ions explained the acridinedione selectivity for the detection of fluoride anions. Our results provide ample evidence and rationale for further modulation and exploration of acridinediones as non-invasive chemosensors for fluoride ion detection in a variety of sample types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。