Diphasic CeO2 Nanocrystal/Bioactive Glass Nanosphere-Based Composite Hydrogel for Diabetic Wound Healing by Reactive Oxygen Species Scavenging and Inflammation Regulation

双相 CeO2 纳米晶体/生物活性玻璃纳米球基复合水凝胶通过活性氧清除和炎症调节促进糖尿病伤口愈合

阅读:6
作者:Muyan Qin, Ziyang Zhu, Jingxin Ding, Jinhui Zhao, Lingtian Wang, Dajun Jiang, Deping Wang, Weitao Jia

Background

Antioxidant therapy aimed at reducing excessive local oxidative stress is one of the most important strategies for promoting diabetic wound repair. The reversible transformation of Ce3+/Ce4+ in ceria (CeO2) can reduce excessive local oxidative stress. However, inducing angiogenesis, local anti-inflammatory effects, and other positive effects are challenging. Therefore, ideal dressings for chronic diabetic wound management must concurrently reduce excessive oxidative stress, promote angiogenesis, and have anti-inflammatory effects.

Conclusions

The synergistic effect of both amorphous materials and nanocrystals provides the BG-10Ce/PDA/PAM composite hydrogel with great potential for diabetic wound healing.

Methods

In this study, Ce-doped borosilicate bioactive glasses (BGs) were prepared using the sol-gel method, and CeO2 nanocrystals (CeO2-NCs) were precipitated on the glass surface by heat treatment to obtain BG-xCe composite glass nanospheres. Subsequently, nanospheres were modified by amino group and combined with dopamine and acrylamide to obtain BG-xCe/polydopamine/polyacrylamide (PDA/PAM) composite hydrogel. Then, the morphology and properties of composite hydrogels were detected, and the properties to treat the diabetic wounds were also evaluated.

Results

The results demonstrated that the BG-10Ce/PDA/PAM composite hydrogel possessed excellent tensile and adhesive properties. In vitro, the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) and fibroblasts (L929) were enhanced by reducing reactive oxygen species (ROS) levels in the conditioned medium. Animal experiments have shown that CeO2-NCs in hydrogels effectively scavenge ROS in diabetic wounds, and Sr dissolved from the glassy phase can modulate macrophage polarization to the M2 phenotype. Conclusions: The synergistic effect of both amorphous materials and nanocrystals provides the BG-10Ce/PDA/PAM composite hydrogel with great potential for diabetic wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。