MondoA-Thioredoxin-Interacting Protein Axis Maintains Regulatory T-Cell Identity and Function in Colorectal Cancer Microenvironment

MondoA-硫氧还蛋白相互作用蛋白轴在结直肠癌微环境中维持调节性 T 细胞身份和功能

阅读:6
作者:Ying Lu, Yangyang Li, Qi Liu, Na Tian, Peng Du, Fangming Zhu, Yichao Han, Xinnan Liu, Xisheng Liu, Xiao Peng, Xiaoxia Wang, Yuchen Wu, Lingfeng Tong, Yakui Li, Yemin Zhu, Lifang Wu, Ping Zhang, Ye Xu, Hanbei Chen, Bin Li, Xuemei Tong

Aims

The metabolic features and function of intratumoral regulatory T cells (Tregs) are ambiguous in colorectal cancer. Tumor-infiltrating Tregs are reprogrammed to exhibit high glucose-depleting properties and adapt to the glucose-restricted microenvironment. The glucose-responsive transcription factor MondoA is highly expressed in Tregs. However, the role of MondoA in colorectal cancer-infiltrating Tregs in response to glucose limitation remains to be elucidated.

Background & aims

The metabolic features and function of intratumoral regulatory T cells (Tregs) are ambiguous in colorectal cancer. Tumor-infiltrating Tregs are reprogrammed to exhibit high glucose-depleting properties and adapt to the glucose-restricted microenvironment. The glucose-responsive transcription factor MondoA is highly expressed in Tregs. However, the role of MondoA in colorectal cancer-infiltrating Tregs in response to glucose limitation remains to be elucidated.

Conclusions

The MondoA-TXNIP axis is a critical metabolic regulator of Treg identity and function in the colorectal cancer microenvironment and a promising target for cancer therapy.

Methods

We performed studies using mice, in which MondoA was conditionally deleted in Tregs, and human colorectal cancer tissues. Seahorse and other metabolic assays were used to assess Treg metabolism. To study the role of Tregs in antitumor immunity, we used a subcutaneous MC38 colorectal cancer model and induced colitis-associated colorectal cancer in mice by azoxymethane and dextran sodium sulfate.

Results

Our analysis of single-cell RNA sequencing data of patients with colorectal cancer revealed that intratumoral Tregs featured low activity of the MondoA-thioredoxin-interacting protein (TXNIP) axis and increased glucose uptake. Although MondoA-deficient Tregs were less immune suppressive and selectively promoted T-helper (Th) cell type 1 (Th1) responses in a subcutaneous MC38 tumor model, Treg-specific MondoA knockout mice were more susceptible to azoxymethane-DSS-induced colorectal cancer. Mechanistically, suppression of the MondoA-TXNIP axis promoted glucose uptake and glycolysis, induced hyperglycolytic Th17-like Tregs, which facilitated Th17 inflammation, promoted interleukin 17A-induced of CD8+ T-cell exhaustion, and drove colorectal carcinogenesis. Blockade of interleukin 17A reduced tumor progression and minimized the susceptibility of MondoA-deficient mice to colorectal carcinogenesis. Conclusions: The MondoA-TXNIP axis is a critical metabolic regulator of Treg identity and function in the colorectal cancer microenvironment and a promising target for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。