Implications of driver genes associated with a high tumor mutation burden identified using next-generation sequencing on immunotherapy in hepatocellular carcinoma

使用新一代测序鉴定的高肿瘤突变负荷相关驱动基因对肝细胞癌免疫治疗的影响

阅读:4
作者:Li Li, Xiaosong Rao, Zhaohong Wen, Xiaosheng Ding, Xiangyi Wang, Weiran Xu, Chao Meng, Yuting Yi, Yanfang Guan, Yongshen Chen, Jiayin Wang, Liang Jun

Abstract

Immune checkpoint blockade (ICB) therapy is a treatment strategy for hepatocellular carcinoma (HCC); however, its clinical efficacy is limited to a select subset of patients. Next-generation sequencing has identified the value of tumor mutation burden (TMB) as a predictor for ICB efficacy in multiple types of tumor, including HCC. Specific driver gene mutations may be indicative of a high TMB (TMB-H) and analysis of such mutations may provide novel insights into the underlying mechanisms of TMB-H and potential therapeutic strategies. In the present study, a hybridization-capture method was used to target 1.45 Mb of the genomic sequence (coding sequence, 1 Mb), analyzing the somatic mutation landscape of 81 HCC tumor samples. Mutations in five genes were significantly associated with TMB-H, including mutations in tumor protein 53 (TP53), Catenin®1 (CTNNB1), AT-rich interactive domain-containing protein 1A (ARID1A), myeloid/lymphoid or mixed-lineage leukemia (MLL) and nuclear receptor co-repressor 1 (NCOR1). Further analysis using The Cancer Genome Atlas Liver Hepatocellular Carcinoma database showed that TP53, CTNNB1 and MLL mutations were positively correlated with TMB-H. Meanwhile, mutations in ARID1A, TP53 and MLL were associated with poor overall survival of patients with HCC. Overall, TMB-H and associated driver gene mutations may have potential as predictive biomarkers of ICB therapy efficacy for treatment of patients with HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。