Reduced tumor growth in EP2 knockout mice is related to signaling pathways favoring an increased local anti‑tumor immunity in the tumor stroma

EP2 基因敲除小鼠肿瘤生长减少与有利于增强肿瘤基质局部抗肿瘤免疫的信号通路有关

阅读:4
作者:Maria Khan, Cecilia Engström, Johan Bourghardt Fagman, Ulrika Smedh, Kent Lundholm, Britt-Marie Iresjö

Abstract

Inflammatory signaling through prostaglandin E2 receptor subtype 2 (EP2) is associated with malignant tumor growth in both experimental models and cancer patients. Thus, the absence of EP2 receptors in host tissues appears to reduce tumor growth and systemic inflammation by inducing major alterations in gene expression levels across tumor tissue compartments. However, it is not yet well‑established how signaling pathways in tumor tissue relate to simultaneous signaling alterations in the surrounding tumor‑stroma, at conditions of reduced disease progression due to decreased host inflammation. In the present study, wild‑type tumor cells, producing high levels of prostaglandin E2 (MCG 101 cells, EP2+/+), were inoculated into EP2 knockout (EP2‑/‑) and EP2 wild‑type (EP2+/+) mice. Solid tumors were dissected into tumor‑ and tumor‑stroma tissue compartments for RNA expression microarray screening, followed by metabolic pathway analyses. Immunohistochemistry was used to confirm adequate dissections of tissue compartments, and to assess cell proliferation (Ki‑67), prostaglandin enzymes (cyclooxygenase 2) and immunity biomarkers (CD4 and CD8) at the protein level. Microarray analyses revealed statistically significant alterations in gene expression in the tumor‑stroma compartment, while significantly less pathway alterations occurred in the tumor tissue compartment. The host knockout of EP2 receptors led to a significant downregulation of cell cycle regulatory factors in the tumor‑stroma compartment, while interferon γ‑related pathways, chemokine signaling pathways and anti‑tumor chemokines [chemokine (C‑X‑C motif) ligand 9 and 10] were upregulated in the tumor compartment. Thus, such gene alterations were likely related to reduced tumor growth in EP2‑deficient hosts. On the whole, pathway analyses of both tumor‑ and tumor‑stroma compartments suggested that absence of host EP2 receptor signaling reduces 'remodeling' of tumor microenvironments and increase local immunity, probably by decreased productions of stimulating growth factors, perhaps similar to well‑recognized physiological observations in wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。