A multifunctional nanocomposite hydrogel with controllable release behavior enhances bone regeneration

具有可控释放行为的多功能纳米复合水凝胶可增强骨再生

阅读:8
作者:Yingji Mao, Yiwen Zhang, Ying Wang, Tao Zhou, Bingxu Ma, Pinghui Zhou

Abstract

Autologous and allogeneic bone grafts remain the gold standard for repairing bone defects. However, donor shortages and postoperative infections contribute to unsatisfactory treatment outcomes. Tissue engineering technology that utilizes biologically active composites to accelerate the healing and reconstruction of segmental bone defects has led to new ideas for in situ bone repair. Multifunctional nanocomposite hydrogels were constructed by covalently binding silver (Ag+) core-embedded mesoporous silica nanoparticles (Ag@MSN) to bone morphogenetic protein-2 (BMP-2), which was encapsulated into silk fibroin methacryloyl (SilMA) and photo-crosslinked to form an Ag@MSN-BMP-2/SilMA hydrogel to preserve the biological activity of BMP-2 and slow its release. More importantly, multifunctional Ag+-containing nanocomposite hydrogels showed antibacterial properties. These hydrogels possessed synergistic osteogenic and antibacterial effects to promote bone defect repair. Ag@MSN-BMP-2/SilMA exhibited good biocompatibility in vitro and in vivo owing to its interconnected porosity and improved hydrophilicity. Furthermore, the multifunctional nanocomposite hydrogel showed controllable sustained-release activity that promoted bone regeneration in repairing rat skull defects by inducing osteogenic differentiation and neovascularization. Overall, Ag@MSN-BMP-2/SilMA hydrogels enrich bone regeneration strategies and show great potential for bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。