Andrographolide in atherosclerosis: integrating network pharmacology and in vitro pharmacological evaluation

穿心莲内酯在动脉粥样硬化中的作用:整合网络药理学和体外药理学评价

阅读:4
作者:Shuai Shi #, Xinyu Ji #, Jingjing Shi, Shuqing Shi, Fei She, Qiuyan Zhang, Yu Dong, Hanming Cui, Yuanhui Hu

Conclusion

We successfully predict AG's potential targets and pathways in atherosclerosis and illustrate the mechanism of action. AG may regulate NF-κB/CEBPB/PPARG signaling to alleviate atherosclerosis.

Methods

Compound-related information was obtained from the PubChem database. Potential target genes were identified using STITCH, SwissTargetPrediction, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and Comparative Toxicogenomics Database. Genes involved in atherosclerosis were obtained from DisGeNet and compared with AG target genes to obtain an overlapping set. Protein-protein interactions were determined by STRING. Gene ontology (GO) analysis was performed at WebGestalt, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was analyzed using Metascape. The final network showing the relationship between compounds, targets, and pathways was constructed using Cytoscape. After that, oxLDL-induced RAW264.7 cells were used to further validate a part of the network pharmacology

Objective

Andrographis paniculata (Burm.f.) Nees is a medicinal plant that has been traditionally used as an anti-inflammatory and antibacterial remedy for several conditions. Andrographolide (AG), the active constituent of A. paniculata (Burm.f.) Nees, has anti-lipidic and anti-inflammatory properties as well as cardiovascular protective effects. The present study aimed to explore the effects of AG on the progression of atherosclerosis and to investigate related mechanisms via network pharmacology. Materials and

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。