Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury

中性粒细胞胞外陷阱通过 STING 通路促进脓毒症相关肺损伤中的免疫血栓形成

阅读:5
作者:Shuainan Zhu, Ying Yu, Mengdi Qu, Zhiyun Qiu, Hao Zhang, Changhong Miao, Kefang Guo

Abstract

Neutrophil extracellular traps (NETs) are involved in the activation and dysfunction of multiple overlapping and interacting pathways, including the immune response to injury, inflammation, and coagulation, which contribute to the pathogenesis of sepsis-induced acute lung injury (SI-ALI). However, how NETs mediate the relationship between inflammation and coagulation has not been fully clarified. Here, we found that NETs, through stimulator of interferon genes (STING) activation, induced endothelial cell damage with abundant production of tissue factor (TF), which magnified the dysregulation between inflammatory and coagulant responses and resulted in poor prognosis of SI-ALI model mice. Disruption of NETs and inhibition of STING improved the outcomes of septic mice and reduced the inflammatory response and coagulation. Furthermore, Toll-like receptor 2 (TLR2) on the surface of endothelial cells was involved in the interaction between NETs and the STING pathway. Collectively, these findings demonstrate that NETs activate the coagulant cascade in endothelial cells in a STING-dependent manner in the development of SI-ALI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。