Bistratified starburst amacrine cells in Sox2 conditional knockout mouse retina display ON and OFF responses

Sox2 条件性敲除小鼠视网膜中的双层星爆无长突细胞显示出开启和关闭反应

阅读:5
作者:Todd L Stincic, Patrick W Keeley, Benjamin E Reese, W Rowland Taylor

Abstract

Cell-intrinsic factors, in conjunction with environmental signals, guide migration, differentiation, and connectivity during early development of neuronal circuits. Within the retina, inhibitory starburst amacrine cells (SBACs) comprise ON types with somas in the ganglion cell layer (GCL) and dendrites stratifying narrowly in the inner half of the inner plexiform layer (IPL) and OFF types with somas in the inner nuclear layer (INL) and dendrites stratifying narrowly in the outer half of the IPL. The transcription factor Sox2 is crucial to this subtype specification. Without Sox2, many ON-type SBACs destined for the GCL settle in the INL while many that reach the GCL develop bistratified dendritic arbors. This study asked whether ON-type SBACs in Sox2-conditional knockout retinas exhibit selective connectivity only with ON-type bipolar cells or their bistratified morphology allows them to connect to both ON and OFF bipolar cells. Physiological data demonstrate that these cells receive ON and OFF excitatory inputs, indicating that the ectopically stratified dendrites make functional synapses with bipolar cells. The excitatory inputs were smaller and more transient in Sox2-conditional knockout compared with wild type; however, inhibitory inputs appeared largely unchanged. Thus dendritic stratification, rather than cellular identification, may be the major factor that determines ON vs. OFF connectivity. NEW & NOTEWORTHY Conditional knockout of the transcription factor Sox2 during early embryogenesis converts a monostratifying starburst amacrine cell into a bistratifying starburst cell. Here we show that these bistratifying starburst amacrine cells form functional synaptic connections with both ON and OFF bipolar cells. This suggests that normal ON vs. OFF starburst connectivity may not require distinct molecular specification. Proximity alone may be sufficient to allow formation of functional synapses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。