Performance evaluation of a new custom, multi-component DNA isolation method optimized for use in shotgun metagenomic sequencing-based aerosol microbiome research

对一种新的定制多组分 DNA 分离方法的性能评估,该方法针对基于散弹枪宏基因组测序的气溶胶微生物组研究进行了优化

阅读:5
作者:Kari Oline Bøifot, Jostein Gohli, Line Victoria Moen, Marius Dybwad

Background

Aerosol microbiome research advances our understanding of bioaerosols, including how airborne microorganisms affect our health and surrounding environment. Traditional microbiological/molecular

Conclusions

By demonstrating and benchmarking a new DNA isolation method optimized for SMS-based aerosol microbiome research with both a mock microbial community and real-world air samples, this study contributes to improved selection, harmonization, and standardization of DNA isolation methods. Our findings highlight the importance of ensuring end-to-end sample integrity and using methods with well-defined performance characteristics. Taken together, the demonstrated performance characteristics suggest the new method could be used to improve the quality of SMS-based aerosol microbiome research in low biomass air environments.

Results

Here, we demonstrate a new custom, multi-component DNA isolation method optimized for SMS-based aerosol microbiome research. The method achieves improved DNA yields from filter-collected air samples by isolating DNA from the entire filter extract, and ensures a more comprehensive microbiome representation by combining chemical, enzymatic and mechanical lysis. Benchmarking against two state-of-the-art DNA isolation methods was performed with a mock microbial community and real-world air samples. All methods demonstrated similar performance regarding DNA yield and community representation with the mock community. However, with subway samples, the new method obtained drastically improved DNA yields, while SMS revealed that the new method reported higher diversity. The new method involves intermediate filter extract separation into a pellet and supernatant fraction. Using subway samples, we demonstrate that supernatant inclusion results in improved DNA yields. Furthermore, SMS of pellet and supernatant fractions revealed overall similar taxonomic composition but also identified differences that could bias the microbiome profile, emphasizing the importance of processing the entire filter extract. Conclusions: By demonstrating and benchmarking a new DNA isolation method optimized for SMS-based aerosol microbiome research with both a mock microbial community and real-world air samples, this study contributes to improved selection, harmonization, and standardization of DNA isolation methods. Our findings highlight the importance of ensuring end-to-end sample integrity and using methods with well-defined performance characteristics. Taken together, the demonstrated performance characteristics suggest the new method could be used to improve the quality of SMS-based aerosol microbiome research in low biomass air environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。