The short-chain fatty acid acetate modulates epithelial-to-mesenchymal transition

短链脂肪酸乙酸酯调节上皮-间质转化

阅读:6
作者:Junfang Lyu, Mehdi Pirooznia, Yuesheng Li, Jianhua Xiong

Abstract

Normal tissue and organ morphogenesis requires epithelial cell plasticity and conversion to a mesenchymal phenotype through a tightly regulated process-epithelial-to-mesenchymal transition (EMT). Alterations of EMT go far beyond cell-lineage segregation and contribute to pathologic conditions such as cancer. EMT is subject to intersecting control pathways; however, EMT's metabolic mechanism remains poorly understood. Here, we demonstrate that transforming growth factor β (TGF-β)-induced EMT is accompanied by decreased fatty acid oxidation (FAO) and reduced acetyl-coenzyme A (acetyl-CoA) levels. Acetyl-CoA is a central metabolite and the sole donor of acetyl groups to acetylate key proteins. Further, the short-chain fatty acid acetate increases acetyl-CoA levels--robustly inhibiting EMT and cancer cell migration. Acetate can restore EMT-associated α-tubulin acetylation levels, increasing microtubule stability. Transcriptome profiling and flow cytometric analysis show that acetate inhibits the global gene expression program associated with EMT and the EMT-associated G1 cell cycle arrest. Taken together, these results demonstrate that acetate is a potent metabolic regulator of EMT and that therapeutic manipulation of acetate metabolism could provide the basis for treating a wide range of EMT-linked pathological conditions, including cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。