Background
A complement imbalance in lung alveolar tissue can play a deteriorating role in COVID-19, leading to acute respiratory distress syndrome (ARDS). CD55 is a transmembrane glycoprotein that inhibits the activation of the complement system at the intermediate cascade level, blocking the activity of the C3 convertase.
Conclusions
Even though the collapse of the alveolar linings and the accumulation of cellular components in the alveolar spaces were characteristic of COVID+/ARDS+ lung tissues, evaluating CD55 expression could be relevant to understand its relation to the disease. Furthermore, targeting CD55 upregulation as a potential therapy could be an option for post-infectious complications of COVID-19 and other inflammatory lung diseases in the future.
Methods
Histochemical staining and immunolabeling of CD55 protein were performed.
Objective
In our study, lung specimens from COVID-19 and ARDS-positive COVID+/ARDS+ patients were compared with COVID-19 and ARDS-negative COVID-/ARDS- as well as COVID-/ARDS+ patients.
Results
The COVID-/ARDS- specimen showed higher expression and homogeneous distribution of glycosaminoglycans as well as compactly arranged elastic and collagen fibers of the alveolar walls in comparison to ARDS-affected lungs. In addition, COVID-/ARDS- lung tissues revealed stronger and homogenously distributed CD55 expression on the alveolar walls in comparison to the disrupted COVID-/ARDS+ lung tissues. Conclusions: Even though the collapse of the alveolar linings and the accumulation of cellular components in the alveolar spaces were characteristic of COVID+/ARDS+ lung tissues, evaluating CD55 expression could be relevant to understand its relation to the disease. Furthermore, targeting CD55 upregulation as a potential therapy could be an option for post-infectious complications of COVID-19 and other inflammatory lung diseases in the future.
