Capsaicin and dihydrocapsaicin induce apoptosis in human glioma cells via ROS and Ca2+‑mediated mitochondrial pathway

辣椒素和二氢辣椒素通过 ROS 和 Ca2+ 介导的线粒体途径诱导人胶质瘤细胞凋亡

阅读:6
作者:Le Xie, Guang-Hong Xiang, Tao Tang, Yan Tang, Ling-Yun Zhao, Dong Liu, You-Ren Zhang, Jin-Tian Tang, Shen Zhou, Da-Hua Wu

Abstract

Human glioma is the most common type of primary brain tumor and one of the most invasive and aggressive tumors, which, even with treatments including surgery, radiotherapy and chemotherapy, often relapses and exhibits resistance to conventional treatment methods. Developing novel strategies to control human glioma is, therefore, an important research focus. The present study investigated the mechanism of apoptosis induction in U251 human glioma cells by capsaicin (Cap) and dihydrocapsaicin (DHC), the major pungent ingredients of red chili pepper, using the Cell Counting Kit‑8 assay, transmission electron microscopy analysis, flow cytometry analysis, laser scanning confocal microscope analysis and immunohistochemical staining. Treatment of U251 glioma cells with Cap and DHC resulted in a dose‑ and time‑dependent inhibition of cell viability and induction of apoptosis, whereas few effects were observed on the viability of L929 normal murine fibroblast cells. The apoptosis‑inducing effects of Cap and DHC in U251 cells were associated with the generation of reactive oxygen species, increased Ca2+ concentrations, mitochondrial depolarization, release of cytochrome c into the cytosol and activation of caspase‑9 and ‑3. These effects were further confirmed by observations of the anti‑tumor effects of Cap and DHC in vivo in a U251 cell murine tumor xenograft model. These results demonstrate that Cap and DHC are effective inhibitors of in vitro and in vivo survival of human glioma cells, and provide the rationale for further clinical investigation of Cap and DHC as treatments for human glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。