TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae

TRPA1 介导果蝇幼虫对温度变化率的感觉

阅读:6
作者:Junjie Luo, Wei L Shen, Craig Montell

Abstract

Avoidance of noxious ambient heat is crucial for survival. A well-known phenomenon is that animals are sensitive to the rate of temperature change. However, the cellular and molecular underpinnings through which animals sense and respond much more vigorously to fast temperature changes are unknown. Using Drosophila larvae, we found that nociceptive rolling behavior was triggered at lower temperatures and at higher frequencies when the temperature increased rapidly. We identified neurons in the brain that were sensitive to the speed of the temperature increase rather than just to the absolute temperature. These cellular and behavioral responses depended on the TRPA1 channel, whose activity responded to the rate of temperature increase. We propose that larvae use low-threshold sensors in the brain to monitor rapid temperature increases as a protective alert signal to trigger rolling behaviors, allowing fast escape before the temperature of the brain rises to dangerous levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。