Helminth Antigen-Conditioned Dendritic Cells Generate Anti-Inflammatory Cd4 T Cells Independent of Antigen Presentation via Major Histocompatibility Complex Class II

Helminth 抗原条件性树突状细胞通过主要组织相容性复合体 II 类产生不依赖于抗原呈递的抗炎 Cd4 T 细胞

阅读:7
作者:Chelsea E Matisz, Markus B Geuking, Fernando Lopes, Björn Petri, Arthur Wang, Keith A Sharkey, Derek M McKay

Abstract

A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy. We show a requirement for Ccr7 expression on transferred H. diminuta antigen-treated (HD)-DCs, suggesting that homing to secondary lymphoid tissues is important for suppression of colitis. Furthermore, sodium metaperiodate-sensitive helminth-derived glycans are required to drive the anti-colitic response in recipient mice. Induction of Th2-type cytokines and Gata-3+Cd4+ cells in secondary lymphoid tissues is dependent on major histocompatibility complex class II (MHC II) protein expression on transferred DCs, although remarkably, transfer of MHC II-/- HD-DCs still attenuated dinitrobenzene sulfonic acid-induced colitis in recipient mice. Moreover, transfer of Cd4+ splenic T cells retrieved from mice administered MHC II-/- HD-DCs suppressed dinitrobenzene sulfonic acid-induced colitis in recipient mice. Our studies reveal that HD-DCs can suppress colitis via an alternative MHC II-independent pathway that involves, in part, mobilization of T-cell responses. These data support the utility of HD-DCs in blocking colitis, revealing a requirement for Ccr7 and providing for HD-DC autologous immunotherapy for disease in which MHC II expression and/or function is compromised.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。