Upregulation of Znf179 acetylation by SAHA protects cells against oxidative stress

SAHA 上调 Znf179 乙酰化可保护细胞免受氧化应激

阅读:6
作者:Chung-Che Wu, Pin-Tse Lee, Tzu-Jen Kao, Szu-Yi Chou, Ruei-Yuan Su, Yi-Chao Lee, Shiu-Hwa Yeh, Jing-Ping Liou, Tsung-I Hsu, Tsung-Ping Su, Cheng-Keng Chuang, Wen-Chang Chang, Jian-Ying Chuang

Abstract

The accumulation of reactive oxygen species (ROS) commonly occurs during normal aging and during some acute/chronic progressive disorders. In order to avoid oxidative damage, scavenging of these radicals is important. Previously, we identified zinc finger protein 179 (Znf179) as a neuroprotector that increases antioxidant enzymes against superoxide radicals. However, the molecular mechanisms involved in the activation and regulation of Znf179 remain unresolved. Here, by performing sequence alignment, bioinformatics analysis, immunoprecipitation using two specific acetyl-lysine antibodies, and treatment with the histone deacetylase (HDAC) inhibitor SAHA, we determined the lysine-specific acetylation of Znf179. Furthermore, we investigated Znf179 interaction with HDACs and revealed that peroxide insult induced a dissociation of Znf179-HDAC1/HDAC6, causing an increase in Znf179 acetylation. Importantly, HDAC inhibition by SAHA further prompted Znf179 hyperacetylation, which promoted Znf179 to form a transcriptional complex with Sp1 and increased antioxidant gene expression against oxidative attack. In summary, the results obtained in this study showed that Znf179 was regulated by HDACs and that Znf179 acetylation was a critical mechanism in the induction of antioxidant defense systems. Additionally, HDAC inhibitors may have therapeutic potential for induction of Znf179 acetylation, strengthening the Znf179 protective functions against neurodegenerative processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。