Construction of Thick Myocardial Tissue through Layered Seeding in Multi-Layer Nanofiber Scaffolds

通过在多层纳米纤维支架中分层接种来构建厚心肌组织

阅读:6
作者:Yuru You, Feng Xu, Lingling Liu, Songyue Chen, Zhengmao Ding, Daoheng Sun

Abstract

A major challenge in myocardial tissue engineering is replicating the heart's highly complex three-dimensional (3D) anisotropic structure. Heart-on-a-chip (HOC) is an emerging technology for constructing myocardial tissue in vitro in recent years, but most existing HOC systems face difficulties in constructing 3D myocardial tissue aligned with multiple cell layers. Electrospun nanofibers are commonly used as scaffolds for cell growth in myocardial tissue engineering, which can structurally simulate the extracellular matrix to induce the aligned growth of myocardial cells. Here, we developed an HOC that integrates multi-layered aligned polycaprolactone (PCL) nanofiber scaffolds inside microfluidic chips, and constructed 3D thick and aligned tissue with a layered seeding approach. By culturing human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) on chip, the myocardial tissue on the two layered nanofibers reached a thickness of ~53 μm compared with ~19 μm for single-layered nanofibers. The obtained myocardial tissue presented well-aligned structures, with densely distributed α-actinin. By the third day post seeding, the hiPSC-CMs contract highly synchronously, with a contraction frequency of 18 times/min. The HOC with multi-layered biomimetic scaffolds provided a dynamic in vitro culture environment for hiPSC-CMs. Together with the layered cell-seeding process, the designed HOC promoted the formation of thick, well-aligned myocardial tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。