Mass Spectrometry Imaging of In Vitro Cryptosporidium parvum-Infected Cells and Host Tissue

体外小隐孢子虫感染细胞和宿主组织的质谱成像

阅读:7
作者:Nils H Anschütz, Stefanie Gerbig, Parviz Ghezellou, Liliana M R Silva, Juan Diego Vélez, Carlos R Hermosilla, Anja Taubert, Bernhard Spengler

Abstract

Cryptosporidium parvum is a zoonotic-relevant parasite belonging to the phylum Alveolata (subphylum Apicomplexa). One of the most zoonotic-relevant etiologies of cryptosporidiosis is the species C. parvum, infecting humans, cattle and wildlife. C. parvum-infected intestinal mucosa as well as host cells infected in vitro have not yet been the subject of extensive biochemical investigation. Efficient treatment options or vaccines against cryptosporidiosis are currently not available. Human cryptosporidiosis is currently known as a neglected poverty-related disease (PRD), being potentially fatal in young children or immunocompromised patients. In this study, we used a combination of atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization (AP-SMALDI) mass spectrometry imaging (MSI) and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to determine and locate molecular biomarkers in in vitro C. parvum-infected host cells as well as parasitized neonatal calf intestines. Sections of C. parvum-infected and non-infected host cell pellets and infected intestines were examined to determine potential biomarkers. Human ileocecal adenocarcinoma cells (HCT-8) were used as a suitable in vitro host cell system. More than a thousand different molecular signals were found in both positive- and negative-ion mode, which were significantly increased in C. parvum-infected material. A database search in combination with HPLC-MS/MS experiments was employed for the structural verification of markers. Our results demonstrate some overlap between the identified markers and data obtained from earlier studies on other apicomplexan parasites. Statistically relevant biomarkers were imaged in cell layers of C. parvum-infected and non-infected host cells with 5 µm pixel size and in bovine intestinal tissue with 10 µm pixel size. This allowed us to substantiate their relevance once again. Taken together, the present approach delivers novel metabolic insights on neglected cryptosporidiosis affecting mainly children in developing countries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。