Design of antibody variable fragments with reduced reactivity to preexisting anti-drug antibodies

设计与现有抗药抗体反应性降低的抗体可变片段

阅读:5
作者:Maria U Johansson, Christopher Weinert, Dietrich Alexander Reichardt, Dana Mahler, Dania Diem, Christian Hess, Diana Feusi, Simon Carnal, Julia Tietz, Noreen Giezendanner, Fabio Mario Spiga, David Urech, Stefan Warmuth

Abstract

Upon reformatting of an antibody to single-chain variable fragment format, a region in the former variable/constant domain interface of the heavy chain becomes accessible for preexisting (PE) anti-drug antibody (ADA) binding. The region exposed because of this reformatting contains a previously hidden hydrophobic patch. In this study, mutations are introduced in this region to reduce PE ADA reactivity and concomitantly reduce the hydrophobic patch. To enhance our understanding of the importance of individual residues in this region with respect to PE ADA reactivity, a total of 50 molecules for each of two antibodies against different tumor-associated antigens were designed, produced, and characterized by an arsenal of biophysical methods. The aim was to identify suitable mutations that reduce, or completely eliminate, PE ADA reactivity to variable fragments, without compromising biophysical and pharmacodynamic properties. Computational methods were used to pinpoint key residues to mutate and to evaluate designed molecules in silico, in order to reduce the number of molecules to produce and characterize experimentally. Mutation of two threonine residues, Thr101 and Thr146 in the variable heavy domain, proved to be critical to eliminate PE ADA reactivity. This may have important implications in optimizing early drug development for antibody fragment-based therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。