Mindin deficiency alleviates renal fibrosis through inhibiting NF-κB and TGF-β/Smad pathways

Mindin 缺陷通过抑制 NF-κB 和 TGF-β/Smad 通路减轻肾脏纤维化

阅读:5
作者:Kang Yang, Wei Li, Tao Bai, Yusha Xiao, Weimin Yu, Pengcheng Luo, Fan Cheng

Abstract

Renal fibrosis acts as a clinical predictor in patients with chronic kidney disease and is characterized by excessive extracellular matrix (ECM) accumulation. Our previous study suggested that mindin can function as a mediator for liver steatosis pathogenesis. However, the role of mindin in renal fibrosis remains obscure. Here, tumour necrosis factor (TGF)-β-treated HK-2 cells and global mindin knockout mouse were induced with renal ischaemia reperfusion injury (IRI) to test the relationship between mindin and renal fibrosis. In vitro, mindin overexpression promoted p65-the hub subunit of the NF-κB signalling pathway-translocation from the cytoplasm into the nucleus, resulting in NF-κB pathway activation in TGF-β-treated HK-2 cells. Meanwhile, mindin activated the TGF-β/Smad pathway, thereby causing fibrotic-related protein expression in vitro. Mindin-/- mice exhibited less kidney lesions than controls, with small renal tubular expansion, inflammatory cell infiltration, as well as collagen accumulation, following renal IRI. Mechanistically, mindin-/- mice suppressed p65 translocation and deactivated NF-κB pathway. Simultaneously, mindin disruption inhibited the TGF-β/Smad pathway, alleviating the expression of ECM-related proteins. Hence, mindin may be a novel target of renal IRI in the treatment of renal fibrogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。