Alginate-aker injectable composite hydrogels promoted irregular bone regeneration through stem cell recruitment and osteogenic differentiation

海藻酸盐-可注射复合水凝胶通过干细胞募集和成骨分化促进不规则骨再生

阅读:6
作者:Xiangkai Zhang, Yanlun Zhu, Lingyan Cao, Xiao Wang, Ao Zheng, Jiang Chang, Jiannan Wu, Jin Wen, Xinquan Jiang, Haiyan Li, Zhiyuan Zhang

Abstract

Recent studies have unveiled the unique osteogenesis and angiogenesis abilities of akermanite. However, such bioceramics rarely fit well into irregularly shaped bony cavities (such as bone defects and the maxillary sinus). In this study, an injectable hydrogel SAG system containing sodium alginate, akermanite and glutamate was prepared and evaluated in such defects. Cell proliferation experiments showed that except for stoste, the other extracts showed no cytotoxicity at various concentrations. In addition, the gene expression of Runx2 (runt-related transcription factor-2), BMP-2 (bone morphogenetic protein-2), ALP (alkaline phosphatase), and BSP (bone sialoprotein) and the activity of ALP were significantly higher in human bone marrow stromal cells (hBMSCs) cultured with 1/2 hydrogel extracts containing 66.9 ppm calcium ions, 23.8 ppm magnesium ions and 33.5 ppm silicon ions compared to those in hBMSCs cultured with the control medium, which indicated that the hydrogel extracts could stimulate the osteogenic differentiation of hBMSCs. Further experiments revealed that the ERK signaling pathway was engaged in osteogenic differentiation as early as 15 minutes after incubation with the hydrogel extracts. In addition, hBMSCs incubated in half-diluted extracts exhibited an almost doubled migration ability compared with the hBMSCs in the control group. More specifically, compared to the control group, hBMSCs cultured with 1/2 hydrogel extracts showed a 7% increase and a 10-fold increase in the protein and gene levels of CXCR4 (C-X-C chemokine receptor type 4), respectively. In vivo tests demonstrated that the bone formation rate of SAG hydrogels injected alone was similar to that of its counterpart seeded with BMSCs, reaching 24% at three months after operation. Therefore, it could be concluded that SAG hydrogels contribute to bone regeneration by not only promoting osteogenic differentiation but also by enhancing the recruitment of BMSCs to defect sites, making the injectable SAG hydrogels competent for the regeneration of irregular bony cavities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。