Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression

和厚朴酚的抗炎作用是通过抑制 PI3K/Akt 通路介导的

阅读:3
作者:Byung Hun Kim, Jae Youl Cho

Aim

In this study, we investigated the regulatory effects of honokiol on various inflammatory events mediated by monocytes/macrophages (U937/RAW264.7 cells) and lymphocytes (splenic lymphocytes and CTLL-2 cells) and their putative action mechanism.

Conclusion

These results suggest that honokiol may act as a potent anti-inflammatory agent with multipotential activities due to an inhibitory effect on the PI3K/Akt pathway.

Methods

In order to investigate the regulatory effects, various cell lines and primary cells (U937, RAW264.7, CTLL-2 cells, and splenic lymphocytes) were employed and various inflammatory events, such as the production of inflammatory mediators, cell adhesion, cell proliferation, and the early signaling cascade, were chosen.

Results

Honokiol strongly inhibited various inflammatory responses, such as: (i) the upregulation of nitric oxide (NO), prostaglandin E2 and TNF-alpha production and costimulatory molecule CD80 induced by lipopolysaccharide (LPS); (ii) the functional activation of beta1-integrin (CD29) assessed by U937 cell-cell and cell-fibronectin adhesions; (iii) the enhancement of lymphocytes and CD8+CTLL-2 cell proliferation stimulated by LPS, phytohemaglutinin A (PHA), and concanavalin A or interleukin (IL)-2; and (iv) the transcriptional upregulation of inducible NO synthase, TNF-alpha, cyclooxygenase-2, IL-12, and monocyte chemoattractant protein (MCP)-1. These anti-inflammatory effects of honokiol seem to be mediated by interrupting the early activated intracellular signaling molecule phosphoinositide 3-kinase (PI3K)/Akt, but not Src, the extracellular signal-regulated kinase, and p38, according to pharmacological, biochemical, and functional analyses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。