A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin

对新型 5-氟尿嘧啶纳米乳剂凝胶在不同离体大鼠、山羊和牛皮肤局部应用的体外渗透性进行比较评估

阅读:5
作者:Niyaz Ahmad, Rizwan Ahmad, Taysser Mohammed Buheazaha, Hussain Salman AlHomoud, Hassan Ali Al-Nasif, Md Sarafroz

Aim of the study

5-Fluorouracil (5-FU) can't be given orally because of very low bioavailability and produces serious adverse effects. Therefore, the main objective of this research is to develop, evaluate, and comparative effects by different nanoformulations of topical application on chemoprevention of skin cancer in different types of skin. Material and

Conclusion

5-FU-NE-Gel is found to be for the better to treatment of cutaneous malignancies. It can be developed 5-FU-NE-Gel could be a promising vehicle for the skin cancer chemoprevention.

Material and methods

Castor oil (oil), Transcutol HP (surfactant), and Polyethylene glycol (PEG)-400 (co-surfactant) have taken on the basis of nonionic property and highest nanoemulsion (NE)-region. Aqueous micro titration method with ultra-sonication method (based on high energy) was used for the preparation of 5-FU-NE. Optimized-5-FU-NE was stable thermodynamically, and their characterizations was performed on the basis of globule size, zeta potential, refractive index, and viscosity. Optimized-NE has been converted into 5-FU-NE-Gel with the help of Carbopol® 934 and also performed their permeation studies in the different skins (cow, goat, and rat, ex vivo) using Logan transdermal diffusion cell (DHC-6T). Optimized-5-FU-NE and 5-FU-NE-Gel were evaluated cytotoxic studies (in vitro) on the melanoma cell lines.

Methods

Castor oil (oil), Transcutol HP (surfactant), and Polyethylene glycol (PEG)-400 (co-surfactant) have taken on the basis of nonionic property and highest nanoemulsion (NE)-region. Aqueous micro titration method with ultra-sonication method (based on high energy) was used for the preparation of 5-FU-NE. Optimized-5-FU-NE was stable thermodynamically, and their characterizations was performed on the basis of globule size, zeta potential, refractive index, and viscosity. Optimized-NE has been converted into 5-FU-NE-Gel with the help of Carbopol® 934 and also performed their permeation studies in the different skins (cow, goat, and rat, ex vivo) using Logan transdermal diffusion cell (DHC-6T). Optimized-5-FU-NE and 5-FU-NE-Gel were evaluated cytotoxic studies (in vitro) on the melanoma cell lines.

Results

The permeation of 5-FU from 5-FU-NE-Gel nanoformulation for rat skin model was 1.56 times higher than the 5-FU-NE and 12.51 times higher than the 5-FU-S for the cow and goat skin model. The values of steady state flux and permeability coefficient for 5-FU-NE-Gel of rat skin were higher i.e. 12.0244 ± 1.12 µgcm-2h-1 and 1.2024 ± 0.073 × 10-2 µg cm-2h-1, respectively. Optimized-5-FU-NE and 5-FU-NE-Gel nanoformulation were found to be physically stable. SK-MEL-5 cancer cells have showed the results based on cytotoxicity studies (in vitro) that 5-FU as Optimized-5-FU-NE-Gel is much more efficacious than 5-FU-NE followed by free 5-FU. Localization of 5-FU from 5-FU-NE-Gel was higher with higher permeation in rat skin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。