Pomelo Peel Essential Oil Ameliorates Cerebral Ischemia-Reperfusion Injury through Regulating Redox Homeostasis in Rats and SH-SY5Y Cells

柚子皮精油通过调节大鼠和SH-SY5Y细胞的氧化还原稳态改善脑缺血再灌注损伤

阅读:4
作者:Wanxiang Hu, Menghua Chen, Wenyan Wang, Fan Huang, Xinyue Tian, Lu Xie

Background

In cardiac accident/cardiopulmonary resuscitation (CA/CPR) rat model, oxidative stress occurs during cerebral ischemia/reperfusion injury (CIRI), and antioxidative treatment has a neuroprotective effect. The antioxidant capabilities of pomelo peel essential oil (PPEO) have mostly been investigated in vitro, with little convincing data in vivo, particularly whether PPEO has a neuroprotective role against CIRI.

Conclusions

In vitro and in vivo, we verified and investigated the neuroprotective effects of PPEO on CIRI. The underlying process may be connected to redox homeostasis regulation, which enhances antioxidative capacity through upmodulation of SLC7A11 and GPX4. It implies that PPEO will be considered as a source of potential adjuvant therapeutic agents for improving CIRI outcomes.

Methods

In this investigation, a CA/CPR SD rat model and an oxygen-glucose deprivation/reperfusion (OGD/R) SH-SY5Y cell model were used to imitate the CIRI, and the neuroprotective role of PPEO was discovered in both. The morphological changes of neurons after PPEO treatment were observed using Nissl staining and transmission electron microscopy, while biochemical markers such as MDA, GSH, and Fe2+ were evaluated. Furthermore, western blot, immunofluorescence, and immunohistochemistry were used to examine the proteins GPX4, SLC7A11, ACSL4, and Nrf2.

Results

Significant morphological alterations were identified during the pathological progression of CIRI. The neurologic deficit scores improved after PPEO therapy, and the expression of GPX4 and SLC7A11 increased, while the levels of intracellular Fe2+, ROS, and ACSL4 declined. PPEO also prevented CIRI caused by erastin (a specific inhibitor of SLC7A11) or RSL3 (inhibitor of GPX4). Furthermore, PPEO-induced increases in SLC7A11 and GPX4 may be related to Nrf2 translocation to the nucleus. Conclusions: In vitro and in vivo, we verified and investigated the neuroprotective effects of PPEO on CIRI. The underlying process may be connected to redox homeostasis regulation, which enhances antioxidative capacity through upmodulation of SLC7A11 and GPX4. It implies that PPEO will be considered as a source of potential adjuvant therapeutic agents for improving CIRI outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。