Nicotinamide Antagonizes Lipopolysaccharide-Induced Hypoxic Cell Signals in Human Macrophages

烟酰胺拮抗脂多糖诱导的人巨噬细胞缺氧细胞信号

阅读:1
作者:Colleen S Curran ,Edward J Dougherty ,Xizhong Cui ,Yan Li ,Mark Jeakle ,Tom Gamble ,Cumhur Y Demirkale ,Parizad Torabi-Parizi

Abstract

Mechanisms to control the immune response are important to pathogen evasion and host defense. Gram-negative bacteria are common pathogens that can activate host immune responses through their outer membrane component, LPS. Macrophage activation by LPS induces cell signals that promote hypoxic metabolism, phagocytosis, Ag presentation, and inflammation. Nicotinamide (NAM) is a vitamin B3 derivative and precursor in the formation of NAD, which is a required cofactor in cellular function. In this study, treatment of human monocyte-derived macrophages with NAM promoted posttranslational modifications that antagonized LPS-induced cell signals. Specifically, NAM inhibited AKT and FOXO1 phosphorylation, decreased p65/RelA acetylation, and promoted p65/RelA and hypoxia-inducible transcription factor-1α (HIF-1α) ubiquitination. NAM also increased prolyl hydroxylase domain 2 (PHD2) production, inhibited HIF-1α transcription, and promoted the formation of the proteasome, resulting in reduced HIF-1α stabilization, decreased glycolysis and phagocytosis, and reductions in NOX2 activity and the production of lactate dehydrogenase A. These NAM responses were associated with increased intracellular NAD levels formed through the salvage pathway. NAM and its metabolites may therefore decrease the inflammatory response of macrophages and protect the host against excessive inflammation but potentially increase injury through reduced pathogen clearance. Continued study of NAM cell signals in vitro and in vivo may provide insight into infection-associated host pathologies and interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。