Effects of alpha-lipoic acid on expression of iron transport and storage proteins in BV-2 microglia cells

硫辛酸对BV-2小胶质细胞铁转运和储存蛋白表达的影响

阅读:6
作者:Ping Chen, Fei-Mi Li, Yu-Fu Zhou, Christopher Qian, Juan Li, Li-Rong Jiang, Zhong-Ming Qian

Background

The antioxidant properties of alpha-lipoic acid (ALA) are associated with its ability to reduce iron in cells and tissues, which is partly due to its inhibiting effect on iron uptake from transferrin and its promoting effect on iron deposition into ferritin. However, the relevant mechanisms are unknown.

Conclusions

ALA could up-regulate TfR1, DMT1 and ferritin expression when iron is increased outside of the cell, promoting iron deposition into ferritin by increasing cell iron uptake, and then reducing free iron both inside and outside of the cell.

Methods

We therefore investigated the effects of ALA on the expression of transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1), ferroportin 1 (Fpn1) and ferritin in BV-2 microglia cells.

Results

We demonstrated that ALA significantly inhibited DMT1 expression, lowered ferritin-light-chain (Ft-L) and ferritin-heavy-chain (Ft-H) content, and had no effect on TfR1 and Fpn1 in BV-2 microglia cells. This indicated that the inhibiting effect of ALA on DMT1 might be one of the causes of the ALA-induced reduction in cellular transferrin-bound-iron uptake. We also demonstrated that ALA enhanced DMT1 and TfR1 expression in ferric ammonium citrate (FAC)-treated cells. FAC treatment led to a significant increase in Ft-L, Ft-H and Fpn1, and pre-treatment with ALA resulted in a further increase in the contents of Ft-L and Ft-H but not Fpn1 in cells. Conclusions: ALA could up-regulate TfR1, DMT1 and ferritin expression when iron is increased outside of the cell, promoting iron deposition into ferritin by increasing cell iron uptake, and then reducing free iron both inside and outside of the cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。