Background
Mesenchymal stem cells-derived exosome (MSCs-exo) was identified to reduce photoaging. The
Conclusion
Our study presented a novel role for BMSCs-exo-miR-29b-3p in improving skin photoaging function, and these findings may provide new insights into the targeted treatment of skin photoaging.
Methods
Exosomes were isolated from BMSCs and verified by Western blot. A photoaging cell model was constructed by UVB irradiation of human dermal fibroblasts (HDFs). Quantitative real-time PCR (RT-qPCR) was performed to detect the mRNA levels of miR-29b-3p, collagen type I and matrix metalloproteinases (MMPs). CCK-8, Transwell and flow cytometry were applicated to examine cell viability, migration and apoptosis. Commercial kits are used to measure levels of oxidative stress indicators. Finally, a dual-luciferase reporter assay was applied to validate the target of miR-29b-3p.
Results
Extracted exosomes were positive for HSP70 and CD9. Survival of HDFs increased in an exosome concentration-dependent manner. UVB irradiation inhibited miR-29b-3p levels compared with controls, but BMSCs-exo treatment restored miR-29b-3p levels (p < .05). Additionally, BMSCs-exo-miR-29b-3p reversed the inhibition of HDFs migration and oxidative stress by UVB irradiation, as well as the promotion of apoptosis. However, this reversal was attenuated by the suppression of miR-29b-3p (p < .05). Furthermore, BMSCs-exo-miR-29b-3p also inhibited the degradation of collagen type I and the production of MMPs in photoaging, and they were also eliminated by the reduced miR-29b-3p. Finally, MMP-2 was the target gene of miR-29b-3p.
