Implication of a novel truncating mutation in titin as a cause of autosomal dominant left ventricular noncompaction

肌联蛋白的新型截短突变是导致常染色体显性左心室心肌致密化不全的原因之一

阅读:11
作者:Xue-Qi Dong, Di Zhang, Yi Qu, Yu-Xiao Hu, Chun-Xue Yang, Tao Tian, Nan Xu, Hai-Lun Jiang, Li Zeng, Peng-Yan Xia, Ya-Xin Liu, Rui Liu, Xian-Liang Zhou

Background

Mutation in the titin gene (TTN) in left ventricular noncompaction (LVNC) has been reported with a highly heterogeneous prevalence, and the molecular mechanisms underlying the pathogenesis of TTN gene mutation are uncharacterized. In the present study, we identified a novel TTN mutation in a pedigree with LVNC and investigated the potential pathogenic mechanism by functional studies.

Conclusions

The TTN p. R2021X mutation has a function in the cause of a highly penetrant familial LVNC. These findings expand the spectrum of titin's roles in cardiomyopathies and provide novel insight into the molecular basis of titin-truncating variants-associated LVNC.

Methods

The whole-genome sequencing with linkage analysis was performed in a 3-generation family affected by autosomal dominant LVNC cardiomyopathy. The clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas9) technology was used to establish novel truncating mutation in TTN in a rat cardiomyoblast H9C2 cell line in vitro, in which functional studies were carried out and characterized in comparison to its wild-type counterpart.

Results

A novel truncating mutation TTN p. R2021X was identified as the only plausible disease-causing variant that segregated with disease among the five surviving affected individuals, with an interrogation of the entire genome excluding other potential causes. Quantitative reverse transcription-polymerase chain reaction and cellular immunofluorescence supported a haploinsufficient disease mechanism in titin truncation mutation cardiomyocytes. Further functional studies suggested mitochondrial abnormities in the presence of mutation, including decreased oxygen consumption rate, reduced adenosine triphosphate production, impaired activity of electron translation chain, and abnormal mitochondrial structure on electron microscopy. Impaired autophagy under electron microscopy accompanied with activation of the Akt-mTORC1 signaling pathway was observed in TTN p. R2021X truncation mutation cardiomyocytes. Conclusions: The TTN p. R2021X mutation has a function in the cause of a highly penetrant familial LVNC. These findings expand the spectrum of titin's roles in cardiomyopathies and provide novel insight into the molecular basis of titin-truncating variants-associated LVNC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。