Mild Hypothermia Attenuates Hepatic Ischemia-Reperfusion Injury through Regulating the JAK2/STAT3-CPT1a-Dependent Fatty Acid β-Oxidation

亚低温通过调节JAK2/STAT3-CPT1a依赖性脂肪酸β-氧化减轻肝脏缺血再灌注损伤

阅读:10
作者:Wei Wang, Xiaoyan Hu, Zhiping Xia, Zhongzhong Liu, Zibiao Zhong, Zhongshan Lu, Anxiong Liu, Shaojun Ye, Qin Cao, Yanfeng Wang, Fan Zhu, Qifa Ye

Abstract

Hepatic ischemia-reperfusion (IR) injury is a clinical issue that can result in poor outcome and lacks effective therapies at present. Mild hypothermia (32-35°C) is a physiotherapy that has been reported to significantly alleviate IR injury, while its protective effects are attributed to multiple mechanisms, one of which may be the regulation of fatty acid β-oxidation (FAO). The aim of the present study was to investigate the role and underlying mechanisms of FAO in the protective effects of mild hypothermia. We used male mice to establish the experimental models as previously described. In brief, before exposure to in situ ischemia for 1 h and reperfusion for 6 h, mice received pretreatment with mild hypothermia for 2 h and etomoxir (inhibitor of FAO) or leptin (activator of FAO) for 1 h, respectively. Then, tissue and blood samples were collected to evaluate the liver injury, oxidative stress, and changes in hepatic FAO. We found that mild hypothermia significantly reduced the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury. In addition, the expression of the rate-limiting enzyme (CPT1a) of hepatic FAO was downregulated almost twofold by IR, while this inhibition could be significantly reversed by mild hypothermia. Experiments with leptin and etomoxir confirmed that activation of FAO could also reduce the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury induced by IR, which had the similar effects to mild hypothermia, while inhibition of FAO had negative effects. Furthermore, mild hypothermia and leptin could promote the phosphorylation of JAK2/STAT3 and upregulate the ratio of BCL-2/BAX to suppress hepatocyte apoptosis. Thus, we concluded that FAO played an important role in hepatic IR injury and mild hypothermia attenuated hepatic IR injury mainly via the regulation of JAK2/STAT3-CPT1a-dependent FAO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。