The Long Noncoding RNA Hotair Regulates Oxidative Stress and Cardiac Myocyte Apoptosis during Ischemia-Reperfusion Injury

长链非编码RNA Hotair调控缺血再灌注损伤过程中的氧化应激和心肌细胞凋亡

阅读:5
作者:Kai Meng, Jiao Jiao, Rui-Rui Zhu, Bo-Yuan Wang, Xiao-Bo Mao, Yu-Cheng Zhong, Zheng-Feng Zhu, Kun-Wu Yu, Yan Ding, Wen-Bin Xu, Jian Yu, Qiu-Tang Zeng, Yu-Dong Peng

Abstract

Oxidative stress and subsequent cardiac myocyte apoptosis play central roles in the initiation and progression of myocardial ischemia-reperfusion (I/R) injury. Homeobox transcript antisense intergenic RNA (Hotair) was previously implicated in various heart diseases, yet its role in myocardial I/R injury has not been clearly demonstrated. Mice with cardiac-restricted knockdown or overexpression of Hotair were exposed to I/R surgery. H9c2 cells were cultured and subjected to hypoxia/reoxygenation (H/R) stimulation to further verify the role and underlying mechanisms of Hotair in vitro. Histological examination, molecular detection, and functional parameters were determined in vivo and in vitro. In response to I/R or H/R treatment, Hotair expression was increased in a bromodomain-containing protein 4-dependent manner. Cardiac-restricted knockdown of Hotair exacerbated, whereas Hotair overexpression prevented I/R-induced oxidative stress, cardiac myocyte apoptosis, and cardiac dysfunction. Mechanistically, we observed that Hotair exerted its beneficial effects via activating AMP-activated protein kinase alpha (AMPKα). Further detection revealed that Hotair activated AMPKα through regulating the enhancer of zeste homolog 2/microRNA-451/calcium-binding protein 39 (EZH2/miR-451/Cab39) axis. We provide the evidence that endogenous lncRNA Hotair is an essential negative regulator for oxidative stress and cardiac myocyte apoptosis in myocardial I/R injury, which is dependent on AMPKα activation via the EZH2/miR-451/Cab39 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。