ZmbZIP4 Contributes to Stress Resistance in Maize by Regulating ABA Synthesis and Root Development

ZmbZIP4 通过调节脱落酸合成和根系发育提高玉米的抗逆性

阅读:6
作者:Haizhen Ma, Can Liu, Zhaoxia Li, Qijun Ran, Guangning Xie, Baomei Wang, Shuang Fang, Jinfang Chu, Juren Zhang

Abstract

In plants, bZIP (basic leucine zipper) transcription factors regulate diverse processes such as development and stress responses. However, few of these transcription factors have been functionally characterized in maize (Zea mays). In this study, we characterized the bZIP transcription factor gene ZmbZIP4 from maize. ZmbZIP4 was differentially expressed in various organs of maize and was induced by high salinity, drought, heat, cold, and abscisic acid treatment in seedlings. A transactivation assay in yeast demonstrated that ZmbZIP4 functioned as a transcriptional activator. A genome-wide screen for ZmbZIP4 targets by immunoprecipitation sequencing revealed that ZmbZIP4 could positively regulate a number of stress response genes, such as ZmLEA2, ZmRD20, ZmRD21, ZmRab18, ZmNHX3, ZmGEA6, and ZmERD, and some abscisic acid synthesis-related genes, including NCED, ABA1, AAO3, and LOS5 In addition, ZmbZIP4 targets some root development-related genes, including ZmLRP1, ZmSCR, ZmIAA8, ZmIAA14, ZmARF2, and ZmARF3, and overexpression of ZmbZIP4 resulted in an increased number of lateral roots, longer primary roots, and an improved root system. Increased abscisic acid synthesis by overexpression of ZmbZIP4 also can increase the plant's ability to resist abiotic stress. Thus, ZmbZIP4 is a positive regulator of plant abiotic stress responses and is involved in root development in maize.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。