Conclusion
This study revealed the underlying mechanisms of AgNPs against F. graminearum, determined their effects on DON production, and evaluated the potential of AgNPs for controlling fungicide-resistant F. graminearum strains. Together, our findings suggest that combinations of AgNPs with DON-reducing fungicides could be used for the management of FHB in the future.
Methods
Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence microscopy were used to examine the fungal morphological changes caused by AgNPs. In addition, RNA-Seq, qRT-PCR, and western blotting were conducted to detect gene transcription and DON levels.
Results
AgNPs with a diameter of 2 nm exhibited effective antifungal activity against both fungicide-sensitive and fungicide-resistant strains of F. graminearum. Further studies showed that AgNP application could impair the development, cell structure, cellular energy utilization, and metabolism pathways of this fungus. RNA-Seq analysis and sensitivity determination revealed that AgNP treatment significantly induced the expression of azole-related ATP-binding cassette (ABC) transporters without compromising the control efficacy of azoles in F. graminearum. AgNP treatment stimulated the generation of reactive oxygen species (ROS), subsequently induced transcription of DON biosynthesis genes, toxisome formation, and mycotoxin production.
