Mitochondrial Transplantation Modulates Inflammation and Apoptosis, Alleviating Tendinopathy Both In Vivo and In Vitro

线粒体移植调节炎症和细胞凋亡,缓解体内和体外的肌腱病

阅读:6
作者:Ji Min Lee, Jung Wook Hwang, Mi Jin Kim, Sang Youn Jung, Kyung-Soo Kim, Eun Hee Ahn, Kyunghoon Min, Yong-Soo Choi

Abstract

Tendinopathy is a common musculoskeletal condition causing pain and dysfunction. Conventional treatment and surgical procedures for tendinopathy are insufficient; accordingly, recent research has focused on tendon-healing regenerative approaches. Tendon injuries usually occur in the hypoxic critical zone, characterized by increased oxidative stress and mitochondrial dysfunction; thus, exogenous intact mitochondria may be therapeutic. We aimed to assess whether mitochondrial transplantation could induce anti-inflammatory activity and modulate the metabolic state of a tendinopathy model. Exogenous mitochondria were successfully delivered into damaged tenocytes by centrifugation. Levels of Tenomodulin and Collagen I in damaged tenocytes were restored with reductions in nuclear factor-κB and matrix metalloproteinase 1. The dysregulation of oxidative stress and mitochondrial membrane potential was attenuated by mitochondrial transplantation. Activated mitochondrial fission markers, such as fission 1 and dynamin-related protein 1, were dose-dependently downregulated. Apoptosis signaling pathway proteins were restored to the pre-damage levels. Similar changes were observed in a collagenase injection-induced rat model of tendinopathy. Exogenous mitochondria incorporated into the Achilles tendon reduced inflammatory and fission marker levels. Notably, collagen production was restored. Our results demonstrate the therapeutic effects of direct mitochondrial transplantation in tendinopathy. These effects may be explained by alterations in anti-inflammatory and apoptotic processes via changes in mitochondrial dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。