Conclusion
In summary, these findings provide the first evidence that alisol B 23-acetate improves the anticancer activity of bufalin on liver cancer through activation of the Wnt/β-catenin axis, and these outcomes might shed new lights on exploring the new methods against liver cancer.
Methods
In order to detect the effect of alisol B 23-acetate in combination with bufalin on liver cancer, human liver cancer SMMC-7721 and MHCC97 cells were used as subjects. Bufalin and alisol B 23-acetate were performed on cells. Cell viability was tested by MTT assay. In addition, flow cytometry was performed to assess the cell apoptosis. Autophagy-related protein levels were tested by western blotting.
Objective
Liver cancer seriously threatens the health of people. Meanwhile, it has been reported that bufalin could act as an inhibitor in liver cancer. In addition, alisol B 23-acetate is a natural product derived from Alisma plantago-aquatica Linn which has an antitumor effect. In this study, we aimed to explore whether alisol B 23-acetate could increase the antitumor effect of bufalin on liver cancer.
Results
The data revealed that bufalin significantly decreased the viability of liver cancer cells, and the inhibitory effect was further increased by alisol B 23-acetate. In addition, alisol B 23-acetate notably enhanced the apoptotic effect of bufalin on liver cancer cells through mediation of Mcl-1, Bax, Bcl-2, and cleaved caspase-3. Meanwhile, alisol B 23-acetate in combination with bufalin induced the autophagy in liver cancer cells through mediation of Beclin-1 and p62. Furthermore, alisol B 23-acetate in combination with bufalin significantly downregulated the level of GSK-3β and increased the expression of β-catenin in liver cancer cells.
