Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes

三种典型细胞迁移模式中的空间蛋白质组学和磷酸化蛋白质组学组织

阅读:4
作者:Georgios Fengos, Alexander Schmidt, Katrin Martin, Erika Fluri, Ruedi Aebersold, Dagmar Iber, Olivier Pertz

Background

Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues.

Conclusions

The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.

Results

HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. Conclusions: The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。