Genetically engineered human cortical spheroid models of tuberous sclerosis

结节性硬化症的基因工程人类皮质球体模型

阅读:5
作者:John D Blair, Dirk Hockemeyer, Helen S Bateup

Abstract

Tuberous sclerosis complex (TSC) is a multisystem developmental disorder caused by mutations in the TSC1 or TSC2 genes, whose protein products are negative regulators of mechanistic target of rapamycin complex 1 signaling. Hallmark pathologies of TSC are cortical tubers-regions of dysmorphic, disorganized neurons and glia in the cortex that are linked to epileptogenesis. To determine the developmental origin of tuber cells, we established human cellular models of TSC by CRISPR-Cas9-mediated gene editing of TSC1 or TSC2 in human pluripotent stem cells (hPSCs). Using heterozygous TSC2 hPSCs with a conditional mutation in the functional allele, we show that mosaic biallelic inactivation during neural progenitor expansion is necessary for the formation of dysplastic cells and increased glia production in three-dimensional cortical spheroids. Our findings provide support for the second-hit model of cortical tuber formation and suggest that variable developmental timing of somatic mutations could contribute to the heterogeneity in the neurological presentation of TSC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。