S-nitrosylation of endothelial nitric oxide synthase impacts erectile function

内皮型一氧化氮合酶的 S-亚硝化影响勃起功能

阅读:6
作者:Parviz K Kavoussi, Ryan P Smith, Janine L Oliver, Raymond A Costabile, William D Steers, Katie Brown-Steinke, Kimberly de Ronde, Jeffrey J Lysiak, Lisa A Palmer

Abstract

Neuronal and endothelial nitric oxide synthases (nNOS and eNOS respectively) play major roles in generating the nitric oxide bioactivity necessary for erectile function. S-nitrosylation has been shown to regulate NOS activity. The presence of S-nitrosylated NOS in the penis and the impact of NOS S-nitrosylation/denitrosylation on erectile function were examined. S-nitrosylated forms of NOS were identified by biotin-switch assay followed by western blot analysis. Erectile function in S-nitrosoglutathione reductase deficient (GSNO+/-) and null (GSNO-/-) mice were assessed by continuous cavernous nerve electrical stimulation (CCNES). Glutathione ethyl ester (GSHee) was used to manipulate S-nitrosylated NOS levels. Immunohistological and immunofluorescence analyses were used to identify the location of eNOS and GSNO-R in corporal tissue. eNOS and nNOS were S-nitrosylated in unstimulated penises of the mice. CCNES resulted in a time-dependent increase in eNOS S-nitrosylation with peak eNOS S-nitrosylation observed during detumescence. S-nitrosylated nNOS levels were unchanged. Intracorporal injection of GSHee reduced S-nitrosylated eNOS levels, enhancing time to maximum intracorporal pressure (ICP). eNOS and GSNO-R co-localize to the endothelium of the corpus cavernosum in the mouse and the human. ICP measurements obtained during CCNES demonstrate GSNO-R+/- and GSNO-R-/- animals cannot maintain an elevated ICP. Results suggest eNOS S-nitrosylation/denitrosylation is an important mechanism regulating eNOS activity during erectile function. GSNO-R is a key enzyme involved in the eNOS denitrosylation. The increase in eNOS S-nitrosylation (inactivation) observed with tumescence may begin a cycle leading to detumescence. Clinically this may indicate that alterations in the balance of S-nitrosylation/denitrosylation either directly or indirectly contribute to erectile dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。