Enhanced antioxidant phytochemicals and catalase activity of celery by-products by a combined strategy of selenium and PGPB under restricted N supply

限制氮供应条件下硒和PGPB联合策略增强芹菜副产物的抗氧化植物化学物质和过氧化氢酶活性

阅读:5
作者:Jacinta Collado-González, María Carmen Piñero, Ginés Otálora, Josefa López-Marín, Francisco M Del Amor

Discussion

The antioxidant activity increased 28% in leaves and 41% in by-products and TPC improved 27% in leaves and 191% in by-products respect to the control. Besides, a significant reduction of β-carotene content (56%, 11% and 43% in petioles, leaves and by-products respect to the control, respectively) was obtained in plants fed with restricted dose of N. The catalase activity was not affected by N dose. The inoculation of the plants with Azotobacter, together with a reduced N dose, achieved a greater accumulation of all the parameters studied. This accumulation was maximum when Se was applied to the leaves compared with the control and depending on the celery part: TPC (121-450%); antioxidant activity (60-68%), of catalase activity (59% - 158%), and of pigments content (50-90%). These findings can boost the valorization of celery by-products as excellent source of bioactive compounds.

Methods

Consequently, in this work twelve treatments were examined: three N nitrogen content in the nutrient solution (100% control, 60%, and 30%) combined with the inoculation of the roots with Azotobacter salinestris, and foliar application selenium solution (8 μM, Na2SeO4). The celery parts from plants grown under limited N dose showed a higher antioxidant activity and TPC (total phenolic compounds) content.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。